The main research interest of our lab is to elucidate the underlying molecular and cellular mechanisms of genetic psychiatric disorders such as psychomotor retardation, Fragile X syndrome (FXS), and sleep disturbances.

 

To understand these brain deficiencies, we combine the use of genetic manipulations, real-time 2-photon imaging of single organelles, synapses and neurons, and video-tracking of behavior in live zebrafish. The zebrafish is a simple transparent vertebrate with conserved organization of the central nervous system. Furthermore, it is ideally suited for genetic manipulation and high-resolution imaging of the entire brain in a live animal.

We develop zebrafish models for human brain disorders. The function of genes and neuronal circuits is determined using loss-of-function (CRISPR-mediated genome editing as well as genetic silencing and ablation of a specific neuronal population) and gain-of-function (transposon-mediated transgenesis) experiments.

 

Our general goal is to link gene function with the development and plasticity of neuronal circuits that regulate specific behavior.

RESEARCH
 

Sleep and sleep disorders

 

Sleep is an evolutionarily conserved process that is vital for animal survival. Sleep disturbances affect approximately 20% of the general population and represent a major health burden. Although sleep clearly improves brain performance, the function of sleep is still debated and includes macromolecule biosynthesis, energy conservation, metabolite clearance, memory consolidation, and synaptic plasticity. We have characterized sleep, cloned sleep genes, and visualized sleep circuits, and established the zebrafish as an attractive model to study the sleep/wake cycle in a high throughput approach.





 

2010- hcrt neurons in zebrafish brain.jp

Image description + tooltip

Why do we sleep?

 

Live imaging of the cellular mechanisms of sleep.

Prolonged sleep deprivation can be lethal, and sleep disturbances are associated with various deficiencies in brain performance. However, it is unclear what effects sleep has at a cellular level. This is because sleep has previously been defined by behavioural criteria and EEG, as it has not been possible to study sleep-dependent cellular processes under the microscope. We developed a new method for time-lapse imaging of single molecules in individual neurons of live zebrafish. Using this approach, we show that sleep increases the movement of chromosomes (chromosome dynamics), which alters their structure to enable reduction of DNA damage, while neuronal activity has the opposite effect. In addition, chromosome dynamics could be a potential marker to define individual sleeping neurons. Thus, sleep increases chromosome dynamics that clear out DNA damage accumulated during waking hours. The current research focus on nuclear and cellular mechanisms of sleep.

 

Video description + tooltip

Psychomotor retardation 

 

Mental and psychomotor retardation are characterized by cognitive, social, and motor deficits. The cause for these disorders is often genetic mutations that typically lead to alteration in neurogenesis, myelination, synaptic plasticity, and the activity of neuronal circuits. In order to understand psychomotor retardation, a critical challenge is to identify and visualize functional circuits in the brain, which contains an incomprehensible dense population of neurons and their processes. We established several zebrafish models for psychomotor retardation and study the mechanism and treatment of these disorders. Remarkably, gene-specific mutations that cause psychomotor retardation in human are also linked to genetic and neuronal alterations in zebrafish. These similarities between the two vertebrate species enable rescue assays in the zebrafish model, which help to understand the mechanism and targets of specific genetic and drug treatments.

head.jpg

Image description + tooltip

Specific Projects

Specific projects

Sleep disorders and the hypocretin/orexin (Hcrt) neuronal networks

The hypothalamus regulates fundamental brain functions, such as metabolism and sleep. Understanding the function of hypothalamic neuronal circuits is critical because of its association with neurodegenerative, genetic, sleep, and metabolic disorders. The hypothalamic Hcrt neurons are regulators of feeding, emotions, reward, sleep and wake, and Hcrt neuron deficiency results in the sleep disorder narcolepsy in humans and animal models. We established a transgenic zebrafish model, enabling inducible ablation of Hcrt neurons, as a model for narcolepsy. Using combination of system-biology, genetics, live-imaging, and behavioral experiments, we identify and characterize novel Hcrt-neuron-specific genes in zebrafish. In addition, we study structural and functional connection between several neuropeptide-producing hypothalamic neuronal networks such as Hcrt, and neurotensin (Nts).

 

Sleep and synaptic plasticity

Sleep is conserved in evolution, and similar circadian and homeostatic factors regulate sleep in animals as distantly related as worms, flies, fish, and humans. Accumulating evidence shows that sleep is important for synaptic plasticity, memory, and learning. Using time-lapse two-photon imaging of excitatory and inhibitory pre- and post-synaptic markers, we study circadian and homeostatic control of rhythmic synaptic plasticity in the brain of live zebrafish.

 

Fragile X syndrome

Fragile-X syndrome (FXS) is the most common single-gene inherited neurodevelopmental disorder causing mental retardation. It is caused by mutations in the fragile X mental retardation 1 (fmr1) gene and the absence of the fragile X mental retardation protein (FMRP). The RNA-binding protein FMRP represses protein translation in synapses, and interacts with the adenosine deaminase acting on the RNA (ADAR) enzyme, which converts adenosine-to-inosine (A-to-I) and modifies the sequence of RNA transcripts. Utilizing the fmr1 zebrafish mutant (fmr1-/-), we study the link between ADAR-mediated RNA editing, neuronal circuit formation, and behavior in FXS.

 

Thyroid hormones and psychomotor retardation

Thyroid hormones (TH) are key regulators of embryonic development, metabolism, and neurogenesis in all vertebrates. The X-linked psychomotor retardation Allan-Herndon-Dudley syndrome (AHDS) is associated with mutations in the TH monocarboxylate transporter 8 (mct8). AHDS is characterized by severe intellectual deficiency, neuromuscular impairment, and high serum TH levels. We utilize mutant and transgenic zebrafish to elucidate the neurological mechanism and find potential genetic and pharmacological treatments to AHDS and other TH-related disorders.

 
LAB MEMBERS
Dr. Lior Appelbaum
Dr. Lior Appelbaum

Principal investigator Email: Lior.Appelbaum@biu.ac.il

press to zoom
Dr. Tali Lerer
Dr. Tali Lerer

Lab manager Email: appelbaumlab@gmail.com

press to zoom
Dr. David Zada
Dr. David Zada

Postdoctoral Fellow Email: zadavid@walla.com

press to zoom
Talya Wasserman
Talya Wasserman

PhD. Student

press to zoom
Rotem Rozenblat
Rotem Rozenblat

PhD. Student

press to zoom
Dana sagi
Dana sagi

PhD. Student

press to zoom
Yuval Rave
Yuval Rave

PhD. Student

press to zoom
Adir Monsanego
Adir Monsanego

MSc. Student

press to zoom
Daniel Forer
Daniel Forer

MSc. Student

press to zoom
Joint Students with Prof. Oren Levi
Amir Harduf
Amir Harduf

PhD. Student

press to zoom
Dr. Raphael Aguillon
Dr. Raphael Aguillon

Postdoctoral Fellow

press to zoom
Shachaf Ben-Ezra
Shachaf Ben-Ezra

MSc. Student

press to zoom
Alumni

Dr. Tali Levitas-Djerbi

Alumna Phd.Student

 

Dr. Adi Shamay

Alumna Phd. Student

 

Inbal Adnati

Alumna MSc. Student

 

Ricarina Rabinovitz

MSc

 

Dr. Einat Blitz

Alumna Postdoctoral Fellow Email: einat.blitz@gmail.com

 

Dr. Adi Tovin

Alumna Postdoctoral Fellow Email: aditovin@gmail.com

Dr. Idan Elbaz

Alumnus Ph.D. student Email: idanelbaz99@yahoo.com

 

Dr. Laura Yelin-Bekerman

Alumna Ph.D. student Email: bekerman.laura@gmail.com

 

Arnon Itiel

Alumnus M.Sc. student Email: arnonetl@gmail.com

 

Dr. Gad Vatine

Alumnus Postdoctoral Fellow

 
SELECTED PUBLICATIONS
2020

Thyroid

Behavioral and Neural Genetics of Zebrafish

2019- whole head and single cell.tif
2019
2018- calcium imaging in the habenula.ti
2018

Science Advances

2017- synapses in dendrites near the eye
2017

Curr Opin Neurobiol

Mol Cell Endocrinol

Neuropsychopharmacology

2016- Schwann cells wrapping motor neuro
2016

Curr Topics Behav Neuroscience

Molecular Neurobiology

Disease Models & Mechanisms

2015-pentraxin 2a neurons in zebrafish l
2015

PLoS Genet

eLife

Scientific reports

J Comp Neurol

FASEB J

2014

PLoS Genet

Dev Biol

PLoS One

2013- MCT8 expressed in the eye.tif
2013

Frontiers in Neural Circuits

J Biol Chem

2012

The Journal of Neuroscience

2011- glial cells (green) and neuronal c
2011

Trends in Neurosciences

2010- hcrt neurons in zebrafish brain.jp
2010

Nature

2009

Proceedings of the National Academy of Sciences U S A

PLoS Biology

2007

Science

PLoS Biology

Brain Research

Journal of Neuroendocrinology

2006

Journal of Biological Chemistry

Molecular and Cellular Endocrinology

Journal of Molecular Endocrinology

2005

Journal of Biological Chemistry

2004

Molecular Endocrinology

2002

Molecular Ecology

 
SELECTED PUBLICATIONS
2020

Admati I, Wasserman-Bartov Y, Tovin A, Rozenblat R, Blitz E, Zada D, Lerer-Goldshtei T, Appelbaum L (2020) Neural Alterations and Hyperactivity of the Hypothalamic–Pituitary–Thyroid Axis in Oatp1c1 Deficiency. Thyroid 30, 161-174.

Zada D and Appelbaum L (2020) Behavioral criteria and techniques to define sleep in zebrafish. In: Behavioral and Neural Genetics of Zebrafish. 141-153.

2019- whole head and single cell.tif
2019

Keene AC, Appelbaum L (2019) Sleep in Fish Models. In: Handbook of Behavioral Neuroscience. Elsevier. 30, 363-374.

Levitas-Djerbi T, Sagi D, Lebenthal-Loinger I, Lerer-Goldshtein T, Appelbaum L (2019). Neurotensin Enhances Locomotor Activity and Arousal, and Inhibits Melanin-Concentrating Hormone Signalings. Neuroendocrinology. 2019 Apr 29. doi: 10.1159/000500590

 

Zada D, Bronshtein I, Lerer-Goldshtein T, Garini Y, Appelbaum L (2019). Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nature Communication. Mar 5;10(1):895. doi: 10.1038/s41467-019-08806-w.

2018- calcium imaging in the habenula.ti
2018

Dvir H, Elbaz I, Havlin S, Appelbaum L, Ivanov PC, Bartsch RP (2018). Neuronal noise as an origin of sleep arousals and its role in sudden infant death syndrome. Science Advances. Apr 25;4(4):eaar6277. doi: 10.1126/sciadv.aar6277

2017- synapses in dendrites near the eye
2017

Eban-Rothschild A, Appelbaum L, de Lecea L (2017). Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology. Apr;43(5):937-952. doi: 10.1038/npp.2017.294.

 

Levitas-Djerbi T, Appelbaum L (2017). Modeling sleep and neuropsychiatric disorders in zebrafish. Curr Opin Neurobiol. 44:89-93 doi: 10.1016/j.conb.2017.02.017. 

 

Zada D, Blitz E, Appelbaum L (2017). Zebrafish - An emerging model to explore thyroid hormone transporters and psychomotor retardation. Mol Cell Endocrinol. pii: S0303-7207(17)30172-7. doi: 10.1016/j.mce.2017.03.004. 

2016- Schwann cells wrapping motor neuro
2016

Elbaz I, Levitas-Djerbi T, Appelbaum L (2016). The Hypocretin/Orexin Neuronal Networks in Zebrafish. Curr Topics Behav Neuroscience. 2017;33:75-92 doi: 10.1007/7854_2016_59. 

 

Elbaz I, Zada D, Tovin A, Braun T, Lerer-Goldshtein T, Wang G,  Mourrain P, Appelbaum L (2016). Sleep-Dependent Structural Synaptic Plasticity of Inhibitory Synapses in the Dendrites of Hypocretin/Orexin Neurons. Molecular Neurobiology. 

 

Zada D, Tovin A, Lerer-Goldshtein T, Appelbaum L  (2016). Pharmacological and BBB-targeted genetic therapies for thyroid hormone-dependent hypomyelination. Disease Models & Mechanisms.  pii: dmm.027227. 

2015-pentraxin 2a neurons in zebrafish l
2015

Shamay-Ramot A, Khermesh K, Porath HT, Barak M, Pinto Y, Wachtel C, Zilberberg A, Lerer-Goldshtein T, Efroni S, Levanon EY, and Appelbaum L (2015). Fmrp interacts with Adar and regulates RNA editing, synaptic density and locomotor activity in zebrafish. PLoS Genet. 11:e1005702.

 

Yelin-Bekerman L, Elbaz I, Diber A, Dahary D, Gibbs-Bar L, Alon S, Lerer-Goldshtein T, Appelbaum L. (2015). Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a. eLife. 4. pii: e08638. 

 

Oren M, Tarrant AM, Alon S, Simon-Blecher N, Elbaz I, Appelbaum L and Levy O. (2015). Profiling molecular and behavioral circadian rhythms in the non-symbiotic sea anemone Nematostella vectensis. Scientific reports. 5:11418. 

 

Levitas-Djerbi T, Yelin-Bekerman L, Lerer-Goldshtein T, Appelbaum L.(2015). The Hypothalamic Leptin-Neurotensin-Hypocretin Neuronal Networks in Zebrafish. J Comp Neurol. 523:831-848. 

 

Elbaz I, Lerer-Goldshtein T, Okamoto H, Appelbaum L. (2015).  Reduced synaptic density and deficient locomotor response in neuronal activity-regulated pentraxin 2a mutant zebrafish. FASEB J.  29:1220-34. 

2014

Zada D, Tovin A, Lerer-Goldshtein T, Vatine GD, Appelbaum L. (2014). Altered behavioral performance and live imaging of circuit-specific neural deficiencies in a zebrafish model for psychomotor retardation. PLoS Genet 10:e1004615. 

 

Sharaby Y, Lahmi R, Amar O, Elbaz I, Lerer-Goldshtein T, Weiss AM, Appelbaum L, Tzur A. (2014). Gas2l3 is essential for brain morphogenesis and development. Dev Biol. 394:305-13. 

 

Oren M, Brikner I, Appelbaum L, Levy O. (2014). Fast neurotransmission related genes are expressed in non nervous endoderm in the sea anemone Nematostella vectensis. PLoS One. 9:e93832.  

2013- MCT8 expressed in the eye.tif
2013

Elbaz, I., Foulkes, N.S., Gothilf, Y., and Appelbaum, L. (2013). Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish. Frontiers in Neural Circuits 7:9.​ 

 

Vatine, G.D., Zada, D., Lerer-Goldshtein, T., Tovin, A., Malkinson, G., Yaniv, K., and Appelbaum, L. (2013). Zebrafish as a model for monocarboxyl transporter 8-deficiency. J Biol Chem 288, 169-180.​ 

2012

Elbaz I, Yelin-Bekerman L, Nicenboim J, Vatine G, and Appelbaum L (2012) Genetic ablation of hypocretin neurons alters behavioral state transitions in zebrafish. The Journal of Neuroscience 32:12961–12972.​ 

2011- glial cells (green) and neuronal c
2011

Wang G, Grone B, Colas D, Appelbaum L and Mourrain P (2011) Synaptic plasticity in sleep: learning, homeostasis and disease. Trends in Neurosciences. 34:452-63.​ 

2010- hcrt neurons in zebrafish brain.jp
2010

Appelbaum L, Wang G, Yokogawa T, Skariah G, Smith SJ, Mourrain P and Mignot E (2010) Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron. 68:87-98 (cover)*.​ *This paper was highlighted in Nature: Neuroscience: Brain connections have rhythm. Nature 468: 349.​

2009

Appelbaum L, Wang G, Maro G, Mori R, Tovin A, Marin W, Yokogawa Y, Kawakami K, Smith SJ, Gothilf Y, Mignot EM and Mourrain P (2009). Sleep/wake regulation and hypocretin-melatonin interaction in zebrafish. Proceedings of the National Academy of Sciences U S A. 106:21942-21947 (track II). ​

 

Vatine G, Vallone D, Appelbaum L, Mracek P, Ben-Moshe Z, Lahiri K, Gothilf Y and Foulkes NS (2009) Light directs zebrafish period2 expression via conserved D and E boxes. PLoS Biology. 7:e1000223. 

2007

Levy O, Appelbaum L, Leggat W, Gothlif Y, Hayward DC, Miller DJ and Hoegh-Guldberg O (2007) Light-responsive cryptochromes from the simplest marine eumetazoan animals. Science. 318: 467-470.​

 

Yokogawa T, Marin W, Faraco J, Pezeron G, Appelbaum L, Zhang J, Rosa F, Mourrain P and Mignot E (2007) Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biology. 5: 2379-2397.​

 

Appelbaum L, Skariah G, Mourrain P and Mignot E (2007) Purinergic transmission by P2X receptors and ecto-nucleoside triphosphate diphosphohydrolase 3 in hypocretin and sensory neurons in zebrafish. Brain Research. 1174: 66-75.​

 

Zilberman-Peled* B, Appelbaum* L, Vallone D, Foulkes NS, Anava S, Anzulovich A, Coon SL, Klein DC, Falcon J,  Ron B and Gothilf Y (2007) Transcriptional regulation of arylalkylamine-N-acetyltransferase-2 gene in the pineal gland of the gilthead seabream. Journal of Neuroendocrinology. 19:46-53. *Equally contributed.​

2006

Faraco* JH, Appelbaum* L, Marin W, Gaus S, Mourrain P, Mignot E (2006) Regulation of hypocretin (orexin) expression in embryonic zebrafish. Journal of Biological Chemistry. 281: 29753-61. *Equally contributed. 

 

18 Appelbaum L, Gothilf Y (2006) Mechanism of pineal-specific gene expression: The role of E-box and photoreceptor conserved elements. Molecular and Cellular Endocrinology. 252: 27-33. ​

 

Appelbaum L, Vallone D, Anzulovich A, Ziv L, Tom M, Foulkes N, Gothilf Y (2006) Zebrafish arylalkylamine-N-acetyltransferase genes - targets for regulation of circadian-clock. Journal of Molecular Endocrinology. 36: 337-347. 

2005

Appelbaum L, Anzulovich A, Baler R, Gothilf Y (2005) Homeobox-clock protein interaction in zebrafish: A shared mechanism for pineal-specific and circadian gene expression. Journal of Biological Chemistry 280: 11544–11551.​

2004

Appelbaum L, Toyama R, Dawid IB, Klein DC, Baler R, Gothilf Y (2004) Zebrafish serotonin-N-acetyltransferase-2 gene regulation: Pineal-restrictive downstream module (PRDM) contains a functional E-box and three photoreceptor conserved elements. Molecular Endocrinology 18: 1210-1221.​

2002

Appelbaum L, Achituv Y, Mokady O (2002) Speciation and the establishment of zonation in an intertidal barnacle - specific settlement versus selection. Molecular Ecology 11: 1731-1737.

IN THE NEWS
 
PHOTO GALLERY

press to zoom

press to zoom

press to zoom

press to zoom
1/19
 
CONTACT
Lior Appelbaum

The Faculty of Life Sciences and The Multidisciplinary Brain Research Center

The Nanotechnology Building (206), Room B-938

Bar Ilan University, Ramat Gan 5290002

Telephone: +972-3-7384536

Email: Lior.Appelbaum@biu.ac.il

Lab

Nanotechnology building (206), Room B-937 (9th floor)

Telephone: +972-3-7384538

Fax: +972-3-7384537

Lab manager: Dr. Tali Lerer

Email: appelbaumlab@gmail.com